
Research Area
Chemical Biology
Related Links
Host Institution
Harvard University
Current Position
Dr. Liu is also Professor of Chemistry and Chemical Biology at Harvard University.
Current Research
Chemical and Biological Discovery Driven by Evolution
David Liu's laboratory develops and applies new approaches to chemical and biological discovery that are driven by the principles underlying biological evolution. A recent focus is the rapid directed evolution of synthetic regulatory elementsproteins and nucleic acids with the ability to precisely regulate information flow in human cells.
Biography
The skills of human biochemists pale compared with those in nature; evolution has created more efficient, selective, and sensitive ways to synthesize molecules. Harnessing natures synthetic ingenuity could yield important insights into chemistry and biology.
David Liu uses the natural tendency of nucleotides to selectively attach to one another to guide the synthesis of complex molecules. Nucleotides on one strand of DNA zip together with those on another, adenines pairing with thymines and guanines with cytosines. Liu uses this complementarity to guide chemical synthesis by attaching precursors of desired molecules to DNA strands containing specific nucleotide sequences. Natural pairing of their associated DNA strands causes the precursors to undergo chemical reactions that form a desired molecule.
He found DNA-templated organic synthesis to be surprisingly general, able to direct a range of chemical reactions even if the structures of the reactants or products do not resemble the natural DNA backbone that supports the nucleotides.
Liu developed strategies to use DNA-templated synthesis in the multistep creation of a range of complex organic small molecules and organic polymers. Such strategies allow the controlled synthesis of molecules through reaction pathways that would not be possible by traditional methods. His techniques have been used to generate diverse libraries of small molecules in a single solution.
Liu is developing ways to quickly synthesize and select from large libraries of molecules those with desired properties, to synthesize new types of polymers, and to discover new chemical-bond-forming reactions. He is using related techniques to evolve functional biological macromolecules, such as proteins and RNAs, to probe the mechanisms of biological systems.
Articles & News
Research Papers
Selected Research Papers






