Scientists & Research
  Overview  
dashed line
Investigators
dashed line
  JFRC Scientists  
dashed line
  Early Career Scientists  
dashed line
  HHMI-GBMF Investigators  
dashed line
  Senior International Research Scholars  
dashed line
  International Early Career Scientists  
dashed line
  TB/HIV  
dashed line
  International Scholars  
dashed line
  Nobel Laureates  
dashed line
Scientific Competitions
dashed line
  FindSci  

Janelia Farm Research Campus
Learn about the new HHMI research campus located in Virginia. Moresmall arrow

Michael Rosbash, Ph.D.

Michael Rosbash

Most scientists spend their careers exploring the depths of one specialized field. For more than 25 years, Michael Rosbash has divided his time between two and made significant contributions to both. His studies of the metabolism and processing of RNA have uncovered some of the fundamental steps by which this key molecule carries out the protein-building instructions written in genes. In separate work, Rosbash also has helped to reveal the molecular basis of circadian rhythms, the built-in 24-hour biological clock that regulates sleep and wakefulness, activity and rest, hormone levels, body temperature, and other important functions. Using the fruit fly Drosophila as a model, he has identified genes and proteins involved in regulating the clock and proposed a mechanism for the way it works. Rosbash's discoveries apply not only to insects but also to humans and other mammals, and they ultimately could lead to the development of drugs to treat insomnia, jet lag, and other sleep disorders.

Rosbash's interest in RNA processing began as a graduate student at MIT in the mid-1960s. Watson and Crick had cracked the genetic code the decade before, and scientists were keen to learn more about the role of RNA. Through the years, Rosbash's studies have helped to clarify the process that begins when RNA is transcribed from DNA in the cell's nucleus and ends in the assembly of a finished protein in the cell's cytoplasm. Enzymes, proteins, and subcellular organelles all converge upon RNA in precise order as it is translated into proteins, his research shows. Missteps in the process have been linked to diseases, including certain cancers, amyotrophic lateral sclerosis (ALS), and Alzheimer's disease. "The more we understand the players, the more likely we can fix what goes wrong," says Rosbash.

His interest in circadian rhythms was sparked by a friendship. After Rosbash came to Brandeis in 1974 as an assistant professor, he became increasingly interested in a subject with far-reaching consequences: the influence of genes on behavior. Soon after his arrival, Rosbash was befriended by another new scientist on the faculty, Jeffrey Hall. Hall had trained under Seymour Benzer, an esteemed scientist at the California Institute of Technology who was the first to show that genes dictate the day-night cycle of activity in fruit flies when he identified a mutation in the Drosophila gene period. "Jeff told me about the history of the research, the people, and the science, and we decided to collaborate," Rosbash explains. "We're still at it today. The personal friendship was really the driving force behind the beginning of this work."

In 1984, Rosbash and Hall cloned the period gene. Several years later, they proposed a mechanism by which a molecular 24-hour clock might work—a transcriptional negative-feedback loop. Their model still holds up, despite discoveries of additional circadian rhythm genes, and it applies to humans as well as fruit flies. In essence, the genes that are part of this loop activate the production of key proteins until a critical activity of each accumulates and turns off transcription. Phosphorylation as well as light regulation of these key proteins is also important to the timing mechanism. Although many details remain to be worked out, "there is an emerging picture of intertwined mechanisms that regulate the levels and activity of key circadian proteins, which ebb and flow in harmony with daily light and dark cycles," Rosbash says.

Over the years, Rosbash and Hall have identified other significant circadian genes and the function of their proteins, with the goal of understanding how the various pieces of the clock fit together. Rosbash's recent studies have uncovered dual body clocks in the brain of fruit flies that independently govern bursts of morning and evening activity. The clock that initiates the morning activity, however, also helps to reset the second clock that regulates movement in the evening. They speculate that mammals, including humans, also possess similar dual circadian clocks, which likely are critical to survival. The synchrony of the dual clocks is probably important not only for maintaining a precise 24-hour cycle but also for measuring changes in day length with the seasons, Rosbash says.

Dr. Rosbash is also Professor of Biology at Brandeis University.


RESEARCH ABSTRACT SUMMARY:

Michael Rosbash is interested in the genes and mechanisms that underlie circadian rhythms as well as the regulation of gene expression.

View Research Abstractsmall arrow

Photo: Paul Fetters

HHMI INVESTIGATOR
1989– Present
Brandeis University

Education
bullet icon B.S., chemistry, California Institute of Technology
bullet icon Ph.D., biophysics, Massachusetts Institute of Technology
Member
bullet icon National Academy of Sciences
bullet icon American Association for the Advancement of Science
bullet icon American Academy of Arts and Sciences
Awards
bullet icon Louisa Gross Horwitz Prize, Columbia University
bullet icon Neuroscience Prize, Peter and Patricia Gruber Foundation
bullet icon Distinguished Alumni Award, California Institute of Technology
bullet icon Gairdner International Award

Research Abstract
bullet icon

Molecular Genetics of Circadian Rhythms

Related Links

AT HHMI

bullet icon

Changing the Circadian Clock with the Seasons
(04.09.07)

bullet icon

Morning 'Alarm Clock' Resets Evening Clock
(11.09.05)

bullet icon

Alternative Splicing

bullet icon

Flies Have Morning and Evening Clocks
(10.13.04)

bullet icon

Clockwork Genes: Discoveries in Biological Time

bullet icon

Unique Circadian Rhythm Photoreceptor
(03.30.00)

bullet icon

How Circadian Clocks Keep Time
(06.05.98)

bullet icon

Shedding Light on Circadian Rhythms
(11.25.99)

bullet icon

Becoming a Scientist

ON THE WEB

external link icon

The Rosbash Lab
(brandeis.edu)

search icon Search PubMed
dashed line
 Back to Topto the top
© 2013 Howard Hughes Medical Institute. A philanthropy serving society through biomedical research and science education.
4000 Jones Bridge Road, Chevy Chase, MD 20815-6789 | (301) 215-8500 | email: webmaster@hhmi.org