Scientists & Research
  Overview  
dashed line
Investigators
dashed line
  JFRC Scientists  
dashed line
  Early Career Scientists  
dashed line
  HHMI-GBMF Investigators  
dashed line
  Senior International Research Scholars  
dashed line
  International Early Career Scientists  
dashed line
  TB/HIV  
dashed line
  International Scholars  
dashed line
  Nobel Laureates  
dashed line
Scientific Competitions
dashed line
  FindSci  

Janelia Farm Research Campus
Learn about the new HHMI research campus located in Virginia. Moresmall arrow

Sean J. Morrison, Ph.D.

Sean J. Morrison

Adult stem cells are the body's ultimate repair system. These immature cells maintain a low profile within tissues and organs until activated by disease or injury. Stem cells then can rive rise to specialized cells within their tissue of origin, and they also have the remarkable ability to replenish themselves through a process called self-renewal. Sean Morrison is unraveling the mechanisms that regulate stem cell function in the blood and nervous systems, particularly those involved in stem cell self-renewal and aging. The Morrison laboratory also compares the mechanisms that regulate stem cell self-renewal and cancer cell proliferation. Ultimately, Morrison hopes to identify new treatments for diseases caused by stem cell defects, including cancer, degenerative disease, and birth defects.

Morrison began his pioneering stem cell work only after a brief stint as a biotech entrepreneur. For his high school science fair project, the Canadian native developed a hydroponically grown fungal fertilizer that dramatically increased the nutrient uptake in plants. The fertilizer attracted the interest and support of the Canadian government and Dalhousie University in Halifax, where he attended college. But when the project failed to garner enough venture capital at a critical point, Morrison shifted gears, opting instead for a career in medical research. He was fascinated by the process of discovery and the elegance he found in well-conceived research. "The best scientists are like artists in the sense that they are constantly motivated by the challenge of doing more and more beautiful work," Morrison explains. "They push themselves to generate the most beautiful data and to perform the most elegant experiments. The best scientists find beauty and satisfaction in the process."

As a graduate student, Morrison identified key markers that distinguish hematopoietic stem cells, which give rise to blood and immune system cells, from other immature hematopoietic cells. He determined that stem cells are fundamentally different from other immature cells, and his results also suggested that certain factors are involved in regulating stem cell self-renewal. Later, as a postdoctoral fellow in the Caltech laboratory of David Anderson, a fellow HHMI investigator, Morrison became the first to isolate uncultured neural crest stem cells, which give rise to the peripheral nervous system. This led to his discovery that stem cells persist throughout adult life in the peripheral nervous system, where they were not previously believed to exist.

Today, Morrison's research focuses on neural stem cells and hematopoietic stem cells. By studying both, he hopes to understand the extent to which mechanisms that control self-renewal and other critical functions are conserved among stem cells in different tissues. Morrison has discovered that there are mechanistic differences between the self-renewal of normal stem cells and the proliferation of cancer cells that can be exploited to kill the cancer cells without harming the normal stem cells. He also has traced a potentially fatal birth defect that causes Hirschsprung disease to defects in the generation and migration of neural crest stem cells in the developing intestines. And, using techniques he developed as a graduate student, Morrison identified a family of cell surface receptors that scientists can use to separate hematopoietic stem cells from other, less primitive, hematopoietic progenitors. Each of these studies has the potential to change the way in which patients are treated.

Morrison strongly believes in the potential of medical research. "The greatest opportunities to change medicine arise from fundamental scientific discoveries, and I believe those opportunities exist in stem cell biology," he says. "Stem cell biology is so central to a variety of important scientific and medical questions that it commands a lot of attention from researchers in diverse fields. That attracted me, because if I invest years of my life answering a question, I really want people to care what the answer is."

Dr. Morrison is also Mary McDermott Cook Chair in Pediatric Genetics and the Director of the Children's Research Institute at the University of Texas Southwestern Medical Center.


RESEARCH ABSTRACT SUMMARY:

Sean Morrison is investigating the mechanisms that regulate stem cell function in the nervous and hematopoietic systems, particularly the mechanisms that regulate stem cell self-renewal and stem cell aging. Parallel studies of these mechanisms in stem cells from two different tissues reveals the extent to which different types of stem cells employ similar or different mechanisms to regulate these critical functions. The Morrison laboratory also studies cancers that arise from the nervous and hematopoietic systems to assess the extent to which they hijack regulatory mechanisms normally used by stem cells to enable neoplastic proliferation and metastasis.

View Research Abstractsmall arrow

Photo: Scott Soderberg, University of Michigan Photo Services

HHMI INVESTIGATOR
2011– Present
University of Texas Southwestern Medical Center

2000–2011
University of Michigan Medical School

Education
bullet icon B.Sc., biology and chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
bullet icon Ph.D., immunology, Stanford University
Awards
bullet icon Searle Scholar Award
bullet icon Technology Review magazine's 100 young innovators (2002)
bullet icon Presidential Early Career Award for Scientists and Engineers
bullet icon Harland Winfield Mossman Award, American Association of Anatomists
bullet icon McCulloch and Till Award, International Society for Hematology and Stem Cells
bullet icon MERIT Award, National Institute on Aging (NIH)

Research Abstract
bullet icon

Mechanisms That Regulate Stem Cell Function in Diverse Tissues

Related Links

AT HHMI

bullet icon

Stand Up and Lead: Scientists Should Influence Policy

bullet icon

Melanoma Spawns Tumors with Deadly Efficiency
(12.03.08)

bullet icon

Sources of Renewal

bullet icon

Protein Distinguishes Fetal and Adult Stem Cells
(07.26.07)

bullet icon

Drosophila Envy

bullet icon

Switching off Aging in Stem Cells
(09.06.06)

bullet icon

Researchers Target Cancer Stem Cells' Unique Vulnerability
(04.05.06)

bullet icon

Identifying Blood Stem Cells Is a SLAM Dunk
(06.30.05)

bullet icon

Doubt Cast on Adult Stem-Cell Plasticity Studies
(10.12.03)

bullet icon

Stem-Cell Defect Causes Hirschsprung Disease
(08.14.03)

bullet icon

Healing Connections

ON THE WEB

search icon Search PubMed
dashed line
 Back to Topto the top
© 2012 Howard Hughes Medical Institute. A philanthropy serving society through biomedical research and science education.
4000 Jones Bridge Road, Chevy Chase, MD 20815-6789 | (301) 215-8500 | email: webmaster@hhmi.org