Scientists & Research
  Overview  
dashed line
Investigators
dashed line
  JFRC Scientists  
dashed line
  Early Career Scientists  
dashed line
  HHMI-GBMF Investigators  
dashed line
  Senior International Research Scholars  
dashed line
  International Early Career Scientists  
dashed line
  TB/HIV  
dashed line
  International Scholars  
dashed line
  Nobel Laureates  
dashed line
Scientific Competitions
dashed line
  FindSci  

Janelia Farm Research Campus
Learn about the new HHMI research campus located in Virginia. Moresmall arrow

Randall T. Moon, Ph.D.

Randall T. Moon

Randall Moon still talks excitedly about the scientific "gift" he received during the 1988 Christmas season. As a recently minted assistant professor at the University of Washington School of Medicine in Seattle, he decided, with collaborator Andrew McMahon (now at Harvard), to investigate what excess amounts of the wnt gene might do to a frog embryo.

Their experiments led to two-headed tadpoles and frogs—quite an unexpected surprise.

Moon's results mimicked those of Hans Spemann, who won the 1935 Nobel Prize in Physiology or Medicine for work that characterized tissue that organized structure formation in an amphibian embryo. When Spemann transplanted tissue from the head of an embryo into another region, the transplanted tissue induced another head to form.

Since Spemann's 1920s work, however, little was known about molecules involved in allowing the embryo to take shape.

In his 1988 experiment, Moon inserted RNA that coded for the Wnt protein into frog embryos, thus increasing the level of Wnt in the cell. The wnt gene, first identified in 1981 as a proto-oncogene causing mammary tumors in the mouse, had been shown to affect the orientation of cells within the fruit fly's embryo. Later in the 1980s, other groups found that wnt belongs to a gene family encoding secreted proteins. But it remained unknown how the protein acted.

Moon's results showed the Wnt protein to be the first known signaling molecule that stimulates the creation of an organizer of the gastrula, a stage in development in which the embryo creates layers—the ectoderm, endoderm, and mesoderm—each of which forms different organ systems and structures in the body. "The experiment was repeated in laboratories throughout the world and really started our careers," Moon said.

Since obtaining his life-changing results, Moon has been dedicated to understanding everything about wnt genes and Wnt proteins, which are highly conserved across species, from the sea squirt to humans. "When animals become multicellular they express Wnts," Moon said. "Wnts are doing something essential for life or else they wouldn't be so prevalent. Evolution doesn't waste its time."

Over the years, Moon's laboratory has not wasted time in unveiling how Wnt proteins influence gene expression, which in turn affects cell growth and development. By binding to receptors on a cell's surface, Wnt proteins activate molecules inside the cell, and that leads to gene activity. In one breakthrough, Moon found that the Wnt signal decreases phosphorylation (or the addition of a phosphate) of a target protein called β-catenin, which then accumulates in the nucleus, where it regulates gene expression.

As Moon and others have revealed, mutations in the Wnt pathway can lead to cancer and changes in bone mass and may have a connection to Alzheimer's. A weakened Wnt signal is involved in a degenerative disease of the retina. Even regeneration, a process whereby damaged or diseased tissue grows back and forms the correct structure, requires or is enhanced by Wnt signaling via β-catenin.

In light of these discoveries, Moon and his collaborators are using Wnt signaling to transform stem cells, or progenitor cells, for cell-based therapies. As director of the University of Washington's Institute of Stem Cell and Regenerative Medicine, established in 2006, Moon sees broad possibilities for clinical applications. Moon's goal, and that of approximately 80 collaborating laboratories at the University of Washington School of Medicine, is to coax stem cells into heart, liver, brain, and other organs to replace diseased cells.

One recent study showed that the Wnt system could be manipulated to increase the number of cardiac muscle cells made from human embryonic stem cell lines. And a mouse model study suggested that Wnts, or drugs that mimic Wnt activity, might be exploited in bone marrow transplantation, which relies on blood cell progenitors to repopulate the bone marrow of cancer patients undergoing chemotherapy or radiation.

Throughout his career—from two-headed tadpoles to cell-based therapies—Moon has taken on techniques, such as proteomics, or animal models, such as frogs, zebrafish, or mice, that were surprising even to him. But as a child of the 1960s, who graduated in 1977 from a "hippie" college, he continues to challenge himself, and conventional wisdom. With his work in Wnts, Moon is following his life's trajectory. "I aim to be different," he said, "and to make a difference."

Dr. Moon is also Professor of Pharmacology, as well as the William and Marilyn Conner Chair, and Director of the Institute for Stem Cell and Regenerative Medicine at the University of Washington School of Medicine, Seattle.


RESEARCH ABSTRACT SUMMARY:

Randall Moon studies the signal transduction pathways that are activated by the Wnt family of secreted ligands and that regulate cell proliferation, cell fate, and cell behavior in development, and stem and progenitor cells in adults. His first goal is to identify the broad functions of Wnt signaling in vertebrates. His second goal is to elucidate the molecular mechanisms by which Wnts transduce signals and to understand how cells respond to these signals. His third goal is to identify how Wnt signaling is involved in diseases and acute injury.

View Research Abstractsmall arrow

Photo: Courtesy of University of Washington School of Medicine

HHMI INVESTIGATOR
1994– Present
University of Washington School of Medicine

Education
bullet icon B.A., Biology, New College, Sarasota, Florida
bullet icon Ph.D., Developmental Biology, University of Washington
Member
bullet icon American Society for Cell Biology
bullet icon Society for Developmental Biology
bullet icon International Society for Stem Cell Research
bullet icon Washington State Academy of Sciences
Awards
bullet icon T.L.L. Temple Foundation Discovery Award, Alzheimer's Association
bullet icon Syntex Scholar in Cardiovascular Research, Syntex, Inc.
bullet icon Fellow, American Association for the Advancement of Science

Research Abstract
bullet icon

Wnt Signal Transduction Networks: From Biology to Medicine

Related Links

AT HHMI

bullet icon

Regeneration for Repair's Sake

bullet icon

Kidney Cancer Shuts Down Protein Destruction Complex
(05.17.07)

bullet icon

Hints from Wnts

bullet icon

Growing New Limbs the Zebrafish Way
(12.29.06)

bullet icon

Genetic Tool Reaps Rich Harvest
(04.07.05)

ON THE WEB

external link icon

A Pond in Seattle: The Moon Lab Homepage, with animation
(washington.edu)

external link icon

Heads and Tales: A Profile of Randall Moon
(the-scientist.com)

search icon Search PubMed
dashed line
 Back to Topto the top
© 2012 Howard Hughes Medical Institute. A philanthropy serving society through biomedical research and science education.
4000 Jones Bridge Road, Chevy Chase, MD 20815-6789 | (301) 215-8500 | email: webmaster@hhmi.org