Scientists & Research
  Overview  
dashed line
Investigators
dashed line
  JFRC Scientists  
dashed line
  Early Career Scientists  
dashed line
  HHMI-GBMF Investigators  
dashed line
  Senior International Research Scholars  
dashed line
  International Early Career Scientists  
dashed line
  TB/HIV  
dashed line
  International Scholars  
dashed line
  Nobel Laureates  
dashed line
Scientific Competitions
dashed line
  FindSci  

Janelia Farm Research Campus
Learn about the new HHMI research campus located in Virginia. Moresmall arrow

Ronald R. Breaker, Ph.D.

Ronald R. Breaker

Ronald Breaker believes in nature's inherent elegance. For nearly 20 years, scientists knew that, in the laboratory, certain single-stranded nucleic acids fold into three-dimensional structures called aptamers, which bind to proteins, amino acids, vitamins, metal ions, and other small molecules. They do this so tightly and with such specificity that it seemed surprising evolution had not taken advantage of them. But no one had found aptamers that bind small molecules in an organism, and many believed they did not exist.

Convinced that such a simple means of recognizing specific molecules would not go unnoticed by nature, Breaker resolved to find natural aptamers that function in modern organisms; so far, he has found dozens of regulatory switches that involve aptamers joined to bacterial genes. These domains of messenger RNAs ("riboswitches") bind to metabolites and control genes responsible for biosynthesis of essential compounds. Riboswitches could represent new drug targets and might be used to control the activity of genes inserted into cells as gene therapies.

Breaker is exploring the structural and functional capabilities of these naturally catalytic RNA and DNA molecules. His research led to creation of the first examples of catalytic DNA—called deoxyribozymes. He also developed a method of "in vitro evolution" to create catalytic RNA molecules that do not exist in nature. He may even be able to resurrect RNA enzymes and other functional RNAs that have been extinct for billions of years.

Beyond aiding understanding of the RNA machinery of cells and RNA's role in evolution, Breaker's research contributes to the capability of creating engineered organisms, biocatalysts, and biosensors for industrial applications and molecular computing systems that could be far more compact than today's silicon computers.

Dr. Breaker is also Professor of Molecular, Cellular, and Developmental Biology at Yale University.


RESEARCH ABSTRACT SUMMARY:

Ronald Breaker is discovering how RNA and DNA molecules catalyze reactions and control gene activity in the cell and is artificially evolving molecules that could be used in industry and medicine.

View Research Abstractsmall arrow

Photo: Michelle McLaughlin/AP, © HHMI

HHMI INVESTIGATOR
2005– Present
Yale University

Education
bullet icon B.S., biology/chemistry, University of Wisconsin at Stevens Point
bullet icon Ph.D., biochemistry, Purdue University
Awards
bullet icon NAS Award in Molecular Biology

Research Abstract
bullet icon

Exotic Functions of Nucleic Acids

Related Links

AT HHMI

bullet icon

Fighting Fluoride

bullet icon

Bacteria Battle Against Toxic Fluoride
(12.22.11)

bullet icon

Modern Relics

ON THE WEB

external link icon

The Breaker Lab
(yale.edu)

search icon Search PubMed
dashed line
 Back to Topto the top
© 2013 Howard Hughes Medical Institute. A philanthropy serving society through biomedical research and science education.
4000 Jones Bridge Road, Chevy Chase, MD 20815-6789 | (301) 215-8500 | email: webmaster@hhmi.org