Scientists & Research
  Overview  
dashed line
Investigators
dashed line
  JFRC Scientists  
dashed line
  Early Career Scientists  
dashed line
  HHMI-GBMF Investigators  
dashed line
  Senior International Research Scholars  
dashed line
  International Early Career Scientists  
dashed line
  TB/HIV  
dashed line
  International Scholars  
dashed line
  Nobel Laureates  
dashed line
Scientific Competitions
dashed line
  FindSci  

Janelia Farm Research Campus
Learn about the new HHMI research campus located in Virginia. Moresmall arrow

How Do Sensory and Motor Neurons Interact To Generate Behavior?


Summary: Stephen Huston is studying how Drosophila motor neurons decode the outputs of their visual system inputs.

How do sensory and motor systems interact? Answering this question is key to understanding how neural circuits generate behavior. Sensory systems encode information about the external world, and motor systems generate movements, but how do the two systems communicate to generate sensory-guided behavior? I record the electrical activity from fly motor neurons during visual stimulation to determine how the motor neurons decode the outputs of visual system neurons and generate appropriate behavior. In addition, by using the fly, I can draw on the strong Drosophila genetic toolkit to manipulate the activity of specific neurons during my experiments.

Considerable scientific effort has gone into understanding how fly visual neurons respond to and encode sensory inputs. Less is known about how the responses of these neurons are used to guide movements of the fly. In the specific case of fly gaze-stabilization behavior, the relevant motor neurons drive muscles that move the head to keep the eyes level. These motor neurons receive direct synaptic inputs from visual neurons. The comparative simplicity of this circuit provides an exciting opportunity to study how motor neurons process their visual system inputs.

I perform patch-clamp and extracellular recordings from these motor neurons while presenting visual stimuli to determine the algorithms that the motor neurons use to extract appropriate information from the visual system. Studying these questions in Drosophila gives me access to the ever-improving repertoire of genetic tools that allow genetic manipulations to be targeted to specific single neuron types. I use such techniques to manipulate upstream sensory neurons during my motor neuron recordings and behavioral experiments to determine the biological mechanisms that underlie the flies' responses.

By studying this system, I hope not only to understand how this part of the fly nervous system works, but also to uncover general principles applicable to understanding how the motor and sensory systems of all animals interact at the neural level to generate behavior.

CONTACT

As of January 12, 2012

JFRC JUNIOR FELLOW

Stephen J. Huston
Stephen J. Huston
 

Related Links

AT HHMI

bullet icon

Janelia Farm Gives Scientists a Fresh Start in the Lab
(10.05.11)

bullet icon

The Huston Lab

ON THE WEB

search icon Search PubMed
dashed line
 Back to Topto the top
© 2012 Howard Hughes Medical Institute. A philanthropy serving society through biomedical research and science education.
4000 Jones Bridge Road, Chevy Chase, MD 20815-6789 | (301) 215-8500 | email: webmaster@hhmi.org