EXROP Projects: Charles S. Zuker

Charles S. Zuker

Summary

Charles Zuker's laboratory is using a combined molecular, genetic, and physiological approach to study signal processing, information transfer, and coding mechanisms in sensory systems.

Summer Lab Size: 20
Program Dates: May 26-August 1, 2014 (Dates for 2015 should be similar)

Sensory Signaling and Processing in Drosophila

Temperature affects nearly every biological process, hence it is not surprising that animals evolved sophisticated ways to sense and respond to temperature changes. How are hot and cold stimuli detected at the periphery? How are they processed in the brain? How are they integrated to produce behaviors such as temperature preference or avoidance of noxious extremes? We study the logic of temperature coding, a problem ideally suited for a comprehensive genetic and molecular dissection of complex circuits and behaviors.

The Neurobiology of Aggression in Slave-Maker Ants

Ants live in large colonies, and to maintain the social cohesion of their society, they use a chemical recognition code. Slave-maker ants are social parasites that are able to exploit this chemical code and use it for their own advantage. More specifically, it is believed that slave-maker ants enter neighboring colonies with the purpose of stealing their brood and raising them as slaves. To do so, slave-maker ants use a chemical substance (an allomone) that causes intra-nestmate aggression and agitation. Amid the chaos, they expel the adult members of the colony and replenish their own work force. This project will explore the slave-raiding behavior and the host behavioral responses to the allomone. In addition, using two-photon calcium imaging, we will explore the neural basis of aggression, nestmate recognition, and alarm processing in the ant brain.

The Biology of Mammalian Taste

We use the taste system as a model for our studies of brain function, because it provides a powerful platform to dissect the processing of sensory information, from detection at the periphery to perception in the brain. In addition, the sense of taste is exquisitely modulated by the internal state of the organism (e.g., hunger, satiety, expectation, emotion), thus it serves as a rich model to explore multisensory integration.

Our research of the past few years has focused on identifying the receptors and cells for sweet, umami, bitter, sour, salty, and carbonation and, in the process, defining the logic of taste coding at the periphery. Currently, we are continuing our work on the periphery, but we also study how taste is represented in the brain and how the information is used to guide actions and behaviors. 

Scientist Profile

Investigator, Janelia Senior Fellow
Columbia University
Neuroscience, Physiology