HHMI News
  Top Stories  
dashed line
Research News
dashed line

Search for Epigenetic Decoder Leads Scientists to Rett Syndromesmall arrow

dashed line

Scientists Find Mechanism that Triggers Immune Responses to DNAsmall arrow

dashed line

New Software Speeds Analysis of Animal Behaviorsmall arrow

dashed line

Moresmall arrow

dashed line
  Science Education News  
dashed line
  Institute News  
dashed line
  NewsSrch  
dashed line
  Noticias  

FOR FURTHER
INFORMATION:


Jennifer Michalowski
(301) 215-8576
michalow@hhmi.org
dashed line Jim Keeley
(301) 215-8858
keeleyj@hhmi.org
dashed line Howard Hughes
Medical Institute
4000 Jones Bridge Road Chevy Chase, MD 20815-6789
(301) 215-8500


News Alert
Sign Up
Research News

October 01, 2006
A Fly’s-Eye View of Evolution

Howard Hughes Medical Institute researchers have found that mutations in a single structural protein can determine whether an insect develops the highly organized, light-harvesting eye that flies have, or the optically simpler compound eye of a beetle or bee.

In their experiments, the scientists showed that flies without this structural protein develop a more primitive eye. This outcome was reversed in the laboratory when researchers supplied the missing protein to a more primitive eye system, inducing it to “evolve” into the more advanced eye.


“It’s not unusual to see alterations in regulatory proteins with a profound effect on form and function. This new finding, however, is unique because it illustrates how a change in a single structural protein can lead to such a spectacular change in form and function.”
Charles S. Zuker

These findings “help illustrate the beauty and power of evolution -- how small changes can have such an incredible impact,” said HHMI investigator Charles S. Zuker, who led the study. Zuker and his colleagues at the University of California, San Diego reported their findings October 1, 2006, in an advance online publication in the journal Nature. The lead author of the paper was Andrew Zelhof. Robert Hardy and Ann Becker were co-authors.

Working with the fruitfly Drosophila, the researchers explored the formation of transparent rod-like structures in the compound eye called rhabdomeres. Rhabdomeres feed light to the bundles of photoreceptors that comprise each of the 800 unit eyes in the fly's compound eyes. Rhabdomeres are fused into a single light-gathering structure in the more primitive “closed rhabdom” compound eyes of beetles, bees, and some mosquitoes. Flies, on the other hand, have evolved a more advanced “open rhabdom” structure. In the more sophisticated eyes of flies, the rhabdomeres are separated, and as a result, fly eyes have significantly better angular resolution, and can detect smaller moving objects.

Zuker, Zelhof, and their colleagues planned their experiments to identify the genes and biological pathway required to assemble the light-harvesting system of photoreceptor neurons. To define those genes, they used a chemical to induce mutations in fruitflies and examined the mutant flies under a microscope in search of any with malformed eyes.

“Much to our delight, we discovered two mutant lines that looked as if their eyes had been transformed from an open-rhabdom to a closed system,” said Zuker. “In fact, in looking at the eyes of one of those, you could easily mistake them for the eyes of an insect with a closed-rhabdom system,” he said.

The researchers' genetic analysis of these flies resulted in the identification of three genes, spacemaker, prominin and chaoptin, which together orchestrate the assembly of rhabdomeres into the fly's elegant photoreceptor system.

Zelhof, the lead author of the study, then compared the expression of spacemaker, prominin, and chaoptin genes in the housefly and a mosquito, whose eyes have the open structure —with that of the honeybee and flour beetle - insects with closed-rhabdom eyes. Although spacemaker was expressed in the body of all the species of insect that were studied, the scientists found that the gene was not turned on in the eyes of species with closed rhabdom systems. “These findings led us to hypothesize that Spacemaker protein may be a key determinant of the evolutionary transition from closed to open-rhabdom systems,” said Zelhof. “Validating that proposal required one critical acid test; and that was to introduce the protein into a closed system and see whether we could transform it into an open one,” he said.

Fortunately, in addition to its open rhabdom eye, the fruitfly itself also possesses a primitive closed version of an eye. This is found in the light sensors called ocelli, which are located on the top of the head, and used for navigation. When the researchers engineered fruitflies that expressed the Spacemaker protein in their ocelli, they found that the ocelli completely reorganized into an open rhabdom system.

Zuker said the findings offer an important lesson about the beauty of evolution. “It's not unusual to see alterations in regulatory proteins with a profound effect on form and function,” he said. “For example, altering a single transcription factor that controls a hierarchy of downstream products can cause an insect to grow extra legs or lose wings. This new finding, however, is unique because it illustrates how a change in a single structural protein can lead to such a spectacular change in form and function.”

   

MORE HEADLINES

bullet icon

INSTITUTE NEWS

11.30.12 | 

Erin O’Shea Named Chief Scientific Officer at HHMI

11.26.12 | 

HHMI Launches Tangled Bank Studios

11.15.12 | 

Eric Betzig to Deliver Public Talk at Janelia Farm
Noticias del HHMI Search News Archive

Download Story PDF

Requires Adobe Reader

HHMI INVESTIGATOR

Charles S. Zuker
Charles S. Zuker
abstract:
Seeing, Feeling, and Tasting: Molecular Genetics of Sensory Signal Transduction
 

Related Links

AT HHMI

bullet icon

Essential Genes that Function in Eye Formation
(02.14.05)

bullet icon

Fruitfly Study Shows How Evolution Wings It
(04.19.06)

bullet icon

Development Genes Evolve New Functions
(11.15.05)

dashed line
 Back to Topto the top
© 2012 Howard Hughes Medical Institute. A philanthropy serving society through biomedical research and science education.
4000 Jones Bridge Road, Chevy Chase, MD 20815-6789 | (301) 215-8500 | email: webmaster@hhmi.org