HHMI News
  Top Stories  
dashed line
  Research News  
dashed line
  Science Education News  
dashed line
  Institute News  
dashed line
  NewsSrch  
dashed line
  Noticias  


News Alert
Sign Up

Kevan Shokat, Ph.D.

Inside the 10 trillion cells of the human body, a vast communications network hums under the control of some 70,000 proteins, orchestrating everything from memory to immunity. Amid this cacophony, scientists have struggled to tune in the distinctive chemical tones of the kinases: a large family of signaling molecules that are critical for almost all cellular activity.

HHMI Media
Kevan Shokat
Kevan Shokat, Ph.D.
Professor of Cellular and Molecular Pharmacology
University of California, San Francisco
San Francisco, California
Research Field: Chemistry, Genetics


Photo: George Nikitin/AP, © HHMI
A high-resolution photograph is available on request.
Request a photosmall arrow

Kevan Shokat has marshaled the resources of chemistry, protein engineering, and genetics to solve this significant biological challenge and provide scientists with the tools they need to understand the function of individual kinases within a cell. All kinases work by transferring energy, in the form of a phosphate, from adenosine triphosphate (ATP)—a molecule that stores energy for the cell, much like a battery—to other proteins. But since roughly 600 kinases exist, the challenge lies in focusing on a specific one.

Shokat has devised an approach to solve that problem, using chemical genetics to decipher individual kinases and their cellular signaling networks. His goals are to understand each kinase’s role in the body and to learn which kinases would be good candidates for drug development. His lab currently is working to identify kinases that may play a role in asthma, diabetes, some forms of cancer, neurological disorders, bacterial infections, drug addiction, and chronic pain.

Using his chemical-genetics approach, Shokat mutates a particular kinase of interest and then designs a labeled molecule, or substrate, that only binds to the mutated kinase. Thus, specific kinases can be tagged and tracked along their signal transduction pathways inside cells. Shokat’s lab also has developed a “knockout” technique to shut down, or inhibit, one specific kinase at a time, allowing researchers to study the effect on cell signaling. Over the past seven years, scientists have used these chemical-genetics techniques to study more than 70 protein kinases involved in a wide range of jobs inside the cell.

In a separate project, Shokat has developed a method to map the locations on proteins where phosphates bind inside cells. By pinpointing bond locations, scientists could correlate bond patterns with disease. Drugs might be designed to block a particular kinase before it carries phosphate to a specific bond site.

Ultimately, Shokat’s chemical-genetics strategy could lead to a map of the “phosphoproteome,” the complete set of all protein kinase substrates in the body. The tools also promise to reveal the workings of other important protein families, such as myosin motor proteins, lipid kinases, and deyhdrogenases, which Shokat’s lab also has begun to study.

Kevan Shokat received a B.A. in chemistry from Reed College and a Ph.D. in organic chemistry from the University of California, Berkeley. He is Professor of Cellular and Molecular Pharmacology at UC-San Francisco and Professor of Chemistry at UC-Berkeley. He won the Eli Lilly Award in Biological Chemistry and an Alfred P. Sloan Research Fellowship.

   

MORE HEADLINES

bullet icon

RESEARCH NEWS

12.21.12 | 

Search for Epigenetic Decoder Leads Scientists to Rett Syndrome

12.20.12 | 

Scientists Find Mechanism that Triggers Immune Responses to DNA

12.02.12 | 

New Software Speeds Analysis of Animal Behavior
bullet icon

INSTITUTE NEWS

11.30.12 | 

Erin O’Shea Named Chief Scientific Officer at HHMI

11.26.12 | 

HHMI Launches Tangled Bank Studios

11.15.12 | 

Eric Betzig to Deliver Public Talk at Janelia Farm
Noticias del HHMI Search News Archive

Related Links

AT HHMI

bullet icon

HHMI Taps 43 of the Nation's Most Promising Scientists
(03.21.05)

bullet icon

2005 New Investigators

bullet icon

Investigator Program FAQ

bullet icon

HHMI's Investigator Program

ON THE WEB

external link icon

The Shokat Lab

dashed line
 Back to Topto the top
© 2013 Howard Hughes Medical Institute. A philanthropy serving society through biomedical research and science education.
4000 Jones Bridge Road, Chevy Chase, MD 20815-6789 | (301) 215-8500 | email: webmaster@hhmi.org