HHMI News
  Top Stories  
dashed line
Research News
dashed line

Scientists Make Insulin-Producing Cells Self-Replicatesmall arrow

dashed line

Finding a New Way to Manage Infectionssmall arrow

dashed line

Seeing the Brain’s Circuits with a New Claritysmall arrow

dashed line

Moresmall arrow

dashed line
  Science Education News  
dashed line
  Institute News  
dashed line
  NewsSrch  
dashed line
  Noticias  

FOR FURTHER
INFORMATION:


Cindy Fox Aisen
(317)843-2276
aisenc@hhmi.org
dashed line Howard Hughes
Medical Institute

(301) 215-8500


News Alert
Sign Up
Research News

October 20, 2009
A Corkscrew Connundrum?
Gilliam Fellow Finds a New Twist on How Some Parasites Move

In 1843, the Hungarian scientist David Gruby—considered the founder of medical microbiology—was studying a microscopic parasite in frog blood. The parasite seemed to propel itself forward like a corkscrew, so he named the creature Trypanosoma sanguinis, after the Greek word “trypanon,” or augur. The name stuck, and the term Trypanosome is now used to describe a genus of unicellular parasites that move in a similar way.

But new research is challenging Gruby’s description of the parasite’s movement. José A. Rodriguez, an HHMI-funded doctoral student at the University of California, Los Angeles, and a multidisciplinary team of colleagues have found that the parasite Trypanasoma brucei, which causes African sleeping sickness, doesn’t move in just one direction like a corkscrew. Instead, it rocks left then right and back again, without changing the direction it is trying to go.

This video shows the parasite T. brucei swimming in blood drawn from an infected mouse, with images obtained every millisecond.
Credit: Jose A. Rodriguez

“It’s a much more sophisticated and efficient way to move,” says Rodriguez, who is first author on a paper published the week of October 19, 2009, in Proceedings of the National Academy of Sciences. “We underestimated these guys. We have to give them more credit for how they regulate their behavior.”

Rodriguez is a molecular biology graduate student who works on cancer research in the UCLA lab of Manuel Penichet. Rodriguez is funded by an HHMI Gilliam Fellowship, which goes to exceptional students from disadvantaged backgrounds who are pursuing a Ph.D. in the sciences. As an undergraduate, Rodriguez majored in biophysics at UCLA, and he is putting that background to use in Penichet’s lab using ultrafast single particle imaging, a technique that lets him take high-speed pictures of biological events as they happen. In Penichet’s lab, Rodriguez looks at molecules that interact with receptors on cancer cells, but the technique can also be used to look at many other biological processes.

Rodriguez— along with fellow biophysicists John Miao and Robijn Bruinsma—began collaborating with Kent L. Hill, a microbiologist at UCLA, whose team studies the movement patterns of T. brucei and other trypanosomes. Hill and Miao saw an opportunity to apply Rodriguez’s expertise in ultrafast single particle imaging to help in getting high-speed pictures of T. brucei as it moves.

This video shows the parasite T. brucei swimming in a culture medium used to maintain the cells outside their host. The images were taken a rate of one every millisecond.
Credit: Jose A. Rodriguez

When Rodriguez snapped images of T. brucei —one thousand pictures every second—they didn’t show what Hill expected. Ordinarily, corkscrews turn in a single direction: clockwise. But these images show that T. brucei moves forward by turning both clockwise and counter-clockwise, Rodriguez explains. This left-to-right rocking—or “kink-driven motility”—generates waves that flow from the tip of the parasite’s flagellum to the base of its body.

Rodriguez hopes the finding is more than just biological curiosity. It might point to a new cure for sleeping sickness by targeting the proteins that T. brucei relies on to move. If drugs could impede this complex movement, they could keep the parasite from getting into the brain, Hill says. “Sleeping sickness has two stages. It starts in the blood, and makes patients sick. And then it goes the brain, where it turns lethal,” he explains. “We don’t have good drugs for treating sleeping sickness in the central nervous system. So what we’d like to do is prevent the parasite from getting there in the first place.”

Meanwhile, Rodriguez is becoming known around UCLA as an enthusiast of high-speed photography of microscopic objects. “This was a fruitful collaboration with several other laboratories,” Penichet says of his graduate student’s foray into trypanosome biology. “This will be (José’s) second, first-author publication, and he’s got several more in our cancer cell research that hopefully will be published soon.”

   

MORE HEADLINES

bullet icon

INSTITUTE NEWS

05.01.13 | 

Rice Professors Receive Lemelson-MIT Award for Global Innovation

04.30.13 | 

HHMI Scientists Elected to National Academy of Sciences

04.23.13 | 

Sean Eddy to Deliver Public Talk at Janelia
Noticias del HHMI Search News Archive

Download Story PDF

Requires Adobe Reader
Versión en españolsmall arrow

Related Links

AT HHMI

bullet icon

José A. Rodriguez biography

bullet icon

The Gilliam Fellowships

bullet icon

Science Education Grants

dashed line
 Back to Topto the top
© 2013 Howard Hughes Medical Institute. A philanthropy serving society through biomedical research and science education.
4000 Jones Bridge Road, Chevy Chase, MD 20815-6789 | (301) 215-8500 | email: webmaster@hhmi.org