HHMI News
  Top Stories  
dashed line
Research News
dashed line

Search for Epigenetic Decoder Leads Scientists to Rett Syndromesmall arrow

dashed line

Scientists Find Mechanism that Triggers Immune Responses to DNAsmall arrow

dashed line

New Software Speeds Analysis of Animal Behaviorsmall arrow

dashed line

Moresmall arrow

dashed line
  Science Education News  
dashed line
  Institute News  
dashed line
  NewsSrch  
dashed line
  Noticias  

FOR FURTHER
INFORMATION:


Jennifer Michalowski
(301) 215-8576
michalow@hhmi.org
dashed line Jim Keeley
(301) 215-8858
keeleyj@hhmi.org
dashed line Howard Hughes
Medical Institute
4000 Jones Bridge Road Chevy Chase, MD 20815-6789
(301) 215-8500


News Alert
Sign Up
Research News

January 29, 2010
Crash-Test Reveals DNA Traffic Control

Enzymes that copy DNA don’t travel on a lonely highway, but instead ply their trade on crowded interstates. Now, Howard Hughes Medical Institute researchers have discovered that when those DNA-copying machines run head-on into oncoming traffic, they kick the obstacles out of their way.

A detailed view of DNA replication showing both strands of the DNA double helix acting as templates for the new DNA strands.

Video: HHMI Biointeractive


“Losing an RNA transcript is no big deal. But the consequences would be dire if the replisome fell apart every time it met an RNA polymerase. ”
Michael E. O'Donnell

The finding, reported in the January 29, 2010, issue of Science, reveals new details about the “rules of the road” that help ensure that cells make accurate copies of their genetic material – essential for producing healthy new cells.

In preparation for cell division, cells rely on complex protein machines to pull apart and untwist opposing strands of DNA. Once the double helix is untwisted, both strands are copied to produce two complete sets of the genome. The replisome is a protein complex that moves at high speed for long distances on DNA, wrenching the helix apart as it goes. The replisome shares its tracks with other proteins that transcribe DNA into messenger RNA, which is then used to produce proteins. Sometimes these convoys move in opposite directions – and collisions are unavoidable. HHMI investigator Michael O’Donnell of Rockefeller University wondered what happens to the machines when they collide.

To find out, O’Donnell and his colleague Richard Pomerantz reconstructed a cellular traffic accident in a test tube. To do that, they first had to assemble the replisome on DNA in a test tube, an endeavor that required years of effort in O’Donnell’s lab. Once his group had successfully reconstructed a replisome from the relatively simple bacteria E. coli, they were ready to begin their experiments.

They set an RNA polymerase—the enzyme that transcribes DNA into RNA—in motion on a piece of DNA and then stalled it. Next, they assembled the components that make up the DNA replication machine at the opposite end of the DNA and nudged this complex into action. Then they analyzed the aftermath of the resulting collision.

They found that the DNA replication machine managed to copy the full length of the DNA molecule, indicating that it had traveled the full distance and somehow got past the RNA polymerase. Further analysis suggested that the DNA replication machine stops when it encounters the RNA polymerase, shoves the RNA polymerase off the DNA, and then proceeds.

Researchers knew that a protein called Mfd kicks RNA polymerase off DNA when it has stalled out because a section of DNA is damaged. In the current experiment, RNA polymerase was stalled by another means. But O’Donnell and Pomerantz wondered whether Mfd would help the DNA replication machinery move through RNA polymerase faster even in this case.

O’Donnell and Pomerantz repeated the crash test, this time including Mfd in the mix. With Mfd present, the replisome made even more full-length copies of the DNA than it did without Mfd, suggesting that Mfd helps give RNA polymerase the boot.

Scientists have reported conflicting observations about whether replisomes fall apart when they hit a road block, and O’Donnell’s results provide additional evidence that the replisome is hearty. “The replisome is very stable,” says O’Donnell. “It just sits there until it finally wins.”

It makes sense biologically to give the replisome priority, he adds. “Losing an RNA transcript is no big deal. But the consequences would be dire if the replisome fell apart every time it met an RNA polymerase. These collisions are probably common in the cell, so keeping the replisome moving ensures that DNA replication proceeds neatly and rapidly.”

O’Donnell is now searching for other factors that push the replisome through blocks. He’d also like to know whether the replisome in eukaryotic cells, such as yeast or mammalian cells, behaves similarly to the bacterial complex he and Pomerantz have studied. The replication machinery in those kinds of cells is much more complicated, and his group is still working on recreating the mammalian replisome in a test tube.

   

MORE HEADLINES

bullet icon

INSTITUTE NEWS

11.30.12 | 

Erin O’Shea Named Chief Scientific Officer at HHMI

11.26.12 | 

HHMI Launches Tangled Bank Studios

11.15.12 | 

Eric Betzig to Deliver Public Talk at Janelia Farm
Noticias del HHMI Search News Archive

Download Story PDF

Requires Adobe Reader

HHMI INVESTIGATOR

Michael E. O'Donnell
Michael E. O'Donnell
abstract:
Mechanisms of DNA Replication
 

Related Links

AT HHMI

bullet icon

DNA Replication Animation on BioInteractive

dashed line
 Back to Topto the top
© 2013 Howard Hughes Medical Institute. A philanthropy serving society through biomedical research and science education.
4000 Jones Bridge Road, Chevy Chase, MD 20815-6789 | (301) 215-8500 | email: webmaster@hhmi.org