HHMI News
  Top Stories  
dashed line
Research News
dashed line

Search for Epigenetic Decoder Leads Scientists to Rett Syndromesmall arrow

dashed line

Scientists Find Mechanism that Triggers Immune Responses to DNAsmall arrow

dashed line

New Software Speeds Analysis of Animal Behaviorsmall arrow

dashed line

Moresmall arrow

dashed line
  Science Education News  
dashed line
  Institute News  
dashed line
  NewsSrch  
dashed line
  Noticias  

News Alert
Sign Up
Research News

March 30, 2001
Mapping the Brain's Food-Intake Circuitry

Researchers have used a genetically altered virus to map the neural inputs that project into regions of the brain that control food intake. According to the scientists, these mapping experiments, which were done in mice, represent an exciting step in understanding the neural circuitry that executes decisions about whether or not to eat.

Howard Hughes Medical Institute investigator Jeffrey M. Friedman and colleagues at The Rockefeller University, Princeton University and the University of California, San Diego (UCSD), used pseudorabies virus to create an elaborate biological tracer that only propagates itself in neurons that express the leptin receptor or neuropeptide Y (NPY), an appetite-stimulating substance found in neurons. The virus, which travels upstream from the site of infection, jumping from neuron to neuron, was engineered to carry a gene for green fluorescent protein. The presence of the fluorescent protein enabled the scientists to trace the path of the virus as it moved through the brain. "The results indicated that a number of factors, including the blood levels of leptin as well as inputs from emotional and higher centers of the brain, contribute to the decision about whether or not to eat," said Friedman.


“It’s not inconceivable to me that individuals who have greater conscious ability to consume less food might have slightly different neural circuitry or more powerful neural connections that might ultimately be visualized through mapping studies.”
Jeffrey M. Friedman

The researchers published their findings in the March 30, 2001, issue of the journal Science . Lead author of the research article is Jeff DeFalco in Friedman’s laboratory, and co-authors include Lynn Enquist and Mark Tomishima at Princeton and Jamey D. Marth , an HHMI investigator at UCSD.

Leptin, which was discovered by Friedman and his colleagues in 1994, is produced by fat tissue and secreted into the bloodstream, where it travels to the brain and other tissues, causing fat loss and decreased appetite. In the brain, leptin affects food intake by acting on distinct classes of neurons in the hypothalamus that express the leptin receptor. However, said Friedman, mapping how the higher centers of the brain affect these neurons is crucial to understanding appetite and food intake.

"It’s obvious that the decision of whether or not to eat has some conscious input," he said. "For example, there is higher cortical input involved in making the decision about whether or not we’re going to skip a meal, try to diet or eat less." If the brain mechanisms behind such decisions were better understood, he said, we might be in a position to better understand the behavioral bases of food intake.

"While our study is only a beginning and doesn’t address such behavioral issues, it’s pretty clear that people differ in how much willpower they have," he said. "And willpower is not a metaphysical thing; it’s a bunch of neural connections and neural circuits. And so, it’s not inconceivable to me that individuals who have greater conscious ability to consume less food might have slightly different neural circuitry or more powerful neural connections that might ultimately be visualized through mapping studies.

"So, now we need to learn how this neural system is organized. And then we can begin to think about what is different about this system in obesity versus leanness; and how the higher circuitry interacts with the circuitry that responds to basic physiological drives."

In mapping the feeding circuitry, Friedman, DeFalco and their colleagues drew on earlier studies by Enquist and other scientists who had used the Bartha strain of pseudorabies virus (PRV) to trace neural circuits. The Bartha strain of PRV can travel "upstream" in neural circuits and it can propagate across neural junctions, called synapses.

However, the scientists wanted to develop a viral tracing system that would specifically label only those hypothalamic neurons expressing the leptin receptor, or those producing neuropeptide Y, an appetite-stimulating peptide found in abundance in certain types of neurons. The scientists found that they could achieve such specificity by building an "off" switch into the virus that was controlled by a protein named Cre. In the engineered virus, Cre is required for PRV to begin replicating. They then targeted Cre to neurons that express either the leptin receptor or NPY. "Once the virus infected these—and only these—cells, the presence of Cre triggers viral replication," said Friedman.

The scientists made certain that they could trace, or follow, the virus by including a green fluorescent protein that would act as a beacon in PRV-infected neurons. "Once the virus is turned on, it’s turned on forever. We traced it backwards to find out which nerve cells send signals to the cells that receive leptin signals," said Friedman. Thus, when the scientists examined slices of mouse brain treated with the virus, they could see which regions of the brain send neurons into the brain's areas known to regulate feeding behavior. "We could see inputs from a number of other regions to the hypothalamus, which is where basic drives for feeding are controlled," he said. "We could see inputs from brain centers that control emotion and from others that receive olfactory inputs. We also saw inputs from centers in the mouse that are the equivalent of centers that control higher cortical or cognitive functions in humans."

"It was not completely unexpected that we would find connections from centers in the brain, such as the amygdala that deals with emotion, that would have an impact on feeding centers in the hypothalamus," said DeFalco. "But the viral tracer also revealed indirect projections—sites that project to sites like the amygdala—which in turn project to the leptin-receptor-expressing neurons in the hypothalamus. That’s where the real power of this technique lies."

While these findings suggest how the system is wired, said Friedman, they are still indirect. "The connections we see suggest that there are inputs and that there will be modulatory effects on feeding from these higher brain regions," he said. "But now we need to understand more about what type of cells these are, what molecules they make and how those molecules might influence the activation state of these neurons that also receive leptin signals."

DeFalco, Friedman and their colleagues are beginning studies using other PRV strains that can follow the connections downward from the higher levels, as well as combinations of viruses engineered with different markers to trace multiple pathways simultaneously. They also plan to explore the hierarchy of the circuitry by using advanced microscopy and computer systems to generate three-dimensional reconstructions of the labeled cells.

   

MORE HEADLINES

bullet icon

INSTITUTE NEWS

11.30.12 | 

Erin O’Shea Named Chief Scientific Officer at HHMI

11.26.12 | 

HHMI Launches Tangled Bank Studios

11.15.12 | 

Eric Betzig to Deliver Public Talk at Janelia Farm
Noticias del HHMI Search News Archive

Download Story PDF

Requires Adobe Reader
Versión en españolsmall arrow

HHMI INVESTIGATOR

Jeffrey M. Friedman
Jeffrey M. Friedman
abstract:
Molecular Studies of Food Intake and Body Weight
 

HHMI ALUMNI INVESTIGATOR

Jamey D. Marth
Jamey D. Marth
abstract:
Mammalian Protein Glycosylation in Cellular Mechanisms of Health and Disease
 

Related Links

AT HHMI

bullet icon

Chipping Away at Leptin's Effects
(04.15.00)

bullet icon

Hormone Reduces Weight
(10.01.95)

bullet icon

HHMI Researchers Discover Weight-Control Hormone
(05.01.95)

dashed line
 Back to Topto the top
© 2013 Howard Hughes Medical Institute. A philanthropy serving society through biomedical research and science education.
4000 Jones Bridge Road, Chevy Chase, MD 20815-6789 | (301) 215-8500 | email: webmaster@hhmi.org