HHMI News
  Top Stories  
dashed line
Research News
dashed line

Search for Epigenetic Decoder Leads Scientists to Rett Syndromesmall arrow

dashed line

Scientists Find Mechanism that Triggers Immune Responses to DNAsmall arrow

dashed line

New Software Speeds Analysis of Animal Behaviorsmall arrow

dashed line

Moresmall arrow

dashed line
  Science Education News  
dashed line
  Institute News  
dashed line
  NewsSrch  
dashed line
  Noticias  

FOR FURTHER
INFORMATION:


Jim Keeley
(301) 215-8858
keeleyj@hhmi.org
dashed line Jennifer Michalowski
(301) 215-8576
michalow@hhmi.org
dashed line Howard Hughes
Medical Institute
4000 Jones Bridge Road Chevy Chase, MD 20815-6789
(301) 215-8500


News Alert
Sign Up
Research News

August 10, 2007
Hidden Quality Control System Keeps Mothers from Producing Toxic Milk

Throughout human history, mother's milk has been regarded as the perfect food. Rich, nutritious and readily available, it is the drink of choice for tens of millions of human infants, not to mention all mammals from mice to whales.

But even mother's milk can turn toxic if the molecular pathways that govern its production are disrupted, according to a new study by Howard Hughes Medical Institute (HHMI) researchers at The Salk Institute for Biological Studies.


“It's one of those unexpected observations. It tells you the mother can transmit quite a bit more than nutrition through the milk.”
Ronald M. Evans

Writing in the August 2007 issue of the journal Genes & Development, a group led by HHMI investigator Ronald M. Evans reports that female mice that are deficient in the protein PPAR gamma produce toxic milk. The milk that had been nutritious instead causes inflammation, growth retardation and loss of hair in nursing mouse pups.

HHMI Media
media image PPAR gamma Activation in the Fat Cell
This animation, narrated by HHMI investigator Ronald M. Evans, provides a close-up view of how PPAR gamma changes the balance of proteins produced by fat cells.
watch moviesmall arrow


Movie: HHMI Biointeractive

“We all think of milk as the ultimate food, the soul food for young animals,” said Evans. “The quality of that milk is also something that is genetically predetermined.”

In essence, the new finding reveals a genetic program for ensuring that mother's milk is the wonder food it is hailed to be: “We stumbled onto a hidden quality control system. Milk has to be a very clean product. It seems there is a whole process the body uses so that milk is scrubbed and doesn't have anything toxic in it.”

Evans said the finding was unanticipated, discovered when his group engineered mice to be deficient in PPAR gamma, a protein that helps regulate the body's sugar and fat stores. Mouse pups developed growth retardation and hair loss when they nursed on mothers who lacked the gene to produce PPAR gamma in blood cells and cells that line the interior of blood and lymph vessels.

“It's one of those unexpected observations,” Evans explained. “It tells you the mother can transmit quite a bit more than nutrition through the milk.”

Evans's group found they could reverse the toxic effects of the milk by letting the affected mouse pups nurse on a mother without the genetic variation in PPAR gamma.

Further studies showed that the mouse mothers with the PPAR-gamma deficiency produced milk with oxidized fatty acids, toxic substances that can prompt inflammation.

Evans and his colleagues showed that they could reverse the toxic effects of the milk by administering aspirin or other anti-inflammatory agents. “If you suppress the inflammation, the hair grows back,” said Evans.

PPARs are a widely studied family of nuclear receptors, proteins that are responsible for sensing hormones and other molecules. They work in concert with other proteins to switch genes on or off and are intimately connected to the cellular metabolism of carbohydrates, fats and proteins.

Although their discovery came as a surprise, Evans said it should have been obvious that there would be a mechanism in place to ensure the quality of milk.

“We should have realized there is something very special about it,” he said. “The reason we haven't heard about toxic milk is because there is a system that keeps it clean. It is logical and should have been anticipated.”

In Evans's view, PPAR gamma's role in ensuring the quality of mother's milk is likely to be a fundamental feature of evolution.

Lactating mothers, he noted, are not protected from inflammation, yet the milk they produce must be a pristine product: “Healthfulness in the body or products of the body is due to a (genetic) program, a process designed over the course of evolutionary history to maintain health.”

PPAR gamma's role in cleansing milk is “a very straightforward variation on how this system controls both lipid metabolism and inflammation. It's the secret of keeping them apart. That may be the reason the whole system exists,” Evans said.

In the human population, there are variants in the genetic program that governs PPAR gamma, which alters the fate of sugar and fat in the body. The system is already the target of anti-inflammatory drug therapy used to manage conditions such as diabetes.

Co-authors of the new Genes & Development article include Yihong Wan, Ling-Wa Chong and Chun-Li Zhang, all of The Salk Institute; and Alan Saghatelian and Benjamin F. Cravatt of The Scripps Research Institute.

   

MORE HEADLINES

bullet icon

INSTITUTE NEWS

11.30.12 | 

Erin O’Shea Named Chief Scientific Officer at HHMI

11.26.12 | 

HHMI Launches Tangled Bank Studios

11.15.12 | 

Eric Betzig to Deliver Public Talk at Janelia Farm
Noticias del HHMI Search News Archive

Download Story PDF

Requires Adobe Reader
Versión en españolsmall arrow

HHMI INVESTIGATOR

Ronald M. Evans
Ronald M. Evans
abstract:
Nuclear Receptors in Physiology and Disease
 

Related Links

AT HHMI

bullet icon

HHMI Bulletin: Exercise in a Pill?

bullet icon

HHMI Bulletin: Searching for the Fat Switch

bullet icon

HHMI Biointeractive: The Science of Fat

bullet icon

HHMI Animation: The Fate of Fat

dashed line
 Back to Topto the top
© 2013 Howard Hughes Medical Institute. A philanthropy serving society through biomedical research and science education.
4000 Jones Bridge Road, Chevy Chase, MD 20815-6789 | (301) 215-8500 | email: webmaster@hhmi.org