HHMI News
  Top Stories  
dashed line
Research News
dashed line

Search for Epigenetic Decoder Leads Scientists to Rett Syndromesmall arrow

dashed line

Scientists Find Mechanism that Triggers Immune Responses to DNAsmall arrow

dashed line

New Software Speeds Analysis of Animal Behaviorsmall arrow

dashed line

Moresmall arrow

dashed line
  Science Education News  
dashed line
  Institute News  
dashed line
  NewsSrch  
dashed line
  Noticias  

FOR FURTHER
INFORMATION:


Jim Keeley
(301) 215-8858
keeleyj@hhmi.org
dashed line Jennifer Michalowski
(301) 215-8576
michalow@hhmi.org
dashed line Howard Hughes
Medical Institute
4000 Jones Bridge Road Chevy Chase, MD 20815-6789
(301) 215-8500


News Alert
Sign Up
Research News

June 16, 2011
Xuemei Chen, Ph.D.

Xuemei Chen finds beauty in cellular organization and seeks to understand the minute, discrete steps through which different types of plant cells acquire their fates. When pressed to examine the events that determined her own fate, however, she concludes that she landed on her path of studying plant biology largely by serendipity.

Growing up in the Hei Long Jiang (Black Dragon River) province in northeast China, Chen had limited options, but she did her best to take advantage of the ones she had. Even in high school, she knew she wanted to study biology. But Beijing University allowed the province to send only two biology majors—one in biochemistry and one in plant physiology. Selection was determined by student scores on the country’s entrance exam.

HHMI Media
media image Xuemei Chen, Ph.D.
Photos: Carlos Puma/AP, © HHMI
High-resolution photographs are available on request.
chenx1_lg.jpg
4x6 inches @300ppi, horizontal crop

Request this photo small arrow
media image chenx2_lg.jpg
4x6 inches @300ppi, horizontal crop

Request this photo small arrow

media image Chen Lab Image
View image small arrow

“I knew I did pretty well, but I didn’t know if I was number one. What if someone else did better than I did and we both applied for the same subjects?” Chen says. Thinking the subject would be less competitive, she chose plant physiology and was accepted. “It turns out that the other student who got in had exactly the same test score I did. To this day, I often wonder what would have happened if we’d both applied to biochemistry.”

One year into her studies at Beijing University, she was allowed to shift to a different major, but plants held her interest. Once she completed her degree, she went to Cornell for her graduate work, where she studied the genetic control of chloroplasts—the cellular organelles where photosynthesis takes place—and has since been hooked on gene regulation. Now, Chen studies plants at both the molecular and the genetic levels and the more she discovers, the more excited she gets. “Sometimes, when I come up with an exciting hypothesis, I can’t sleep for days,” she says. “It’s all just so interesting—I want to know how these molecules in the cell organize the cell, and then eventually the whole organism.”

In her lab at the University of California, Riverside, Chen’s research has two major foci. At the developmental level, she’s studying stem cells that give rise to flowers that, unlike the shoot stem cells that continue to produce biomass as long as a plant is alive, cease to be stem cells once all floral organs are made. “If you understand how floral stem cells are regulated, you could take advantage of them to generate biomass. You could change the size of the fruit or the number of the seeds,” she says. “Right now we’re just trying to understand the basic mechanisms underlying stem cell regulation.”

She hopes to get a better idea of how undifferentiated cells acquire their fates and is unraveling the specific steps that transform stem cells into a flower’s petals, sepals, stamens, and pistil. She has discovered that the genes controlling these patterns can be controlled through mechanisms that limit protein production after a gene has been transcribed into RNA—a surprise to plant biologists, who previously thought floral development was controlled entirely by regulating gene transcription. She’s now building on this discovery, studying Arabidopsis mutants that never stop making floral organs.

Chen’s second line of research focuses on small RNAs. In 2002, her lab and two others were the first to find that microRNAs—regulatory molecules first identified in the roundworm—existed in plants. The microRNAs Chen described play an important role in floral patterning and gene silencing, and she’s now looking deeper to gain a better understanding of how they’re made and how they work.

MicroRNAs can act in two ways to regulate a target gene, either eliminating its messenger RNA or inhibiting it so it can’t be transcribed into proteins. The inhibition aspect is still poorly understood, and that’s where Chen is focusing her efforts. Her discoveries in plants, including the identification of an enzyme that helps stabilize microRNAs and a separate protein that helps drive their creation, have frequently been followed by parallel findings—in her lab and others—demonstrating that the same mechanisms also exist in animal cells. “Once you figure out how these small RNAs work, you could harness their power to target specific genes, silencing them so as to help agriculture or treat human disease,” she says.

Xuemei Chen is a Professor of Plant Cell and Molecular Biology at the University of California, Riverside. She received her B.S. in biology from Peking University in Beijing, and earned a Ph.D. in plant molecular genetics and biochemistry from Cornell University. She is the university’s Furuta Chair Professor and a recipient of a Charles Albert Shull Award from the American Society for Plant Biology.

Photo: Carlos Puma/AP

   

MORE HEADLINES

bullet icon

INSTITUTE NEWS

11.30.12 | 

Erin O’Shea Named Chief Scientific Officer at HHMI

11.26.12 | 

HHMI Launches Tangled Bank Studios

11.15.12 | 

Eric Betzig to Deliver Public Talk at Janelia Farm
Noticias del HHMI Search News Archive

Download Story PDF

Requires Adobe Reader


Related Links

AT HHMI

bullet icon

New Program Boosts Support for Plant Scientists at Critical Time
(06.16.11)

bullet icon

2011 HHMI-GBMF Investigators
(06.16.11)

bullet icon

New Program Provides Vital Support for Plant Scientists
(09.29.10)

bullet icon

Backgrounder: How Plant Research Is Opening New Scientific Frontiers
(PDF, 119 KB)

ON THE WEB

external link icon

Gordon and Betty Moore Foundation
(moore.org)

external link icon

American Society of Plant Biologists
(aspb.org)

dashed line
 Back to Topto the top
© 2012 Howard Hughes Medical Institute. A philanthropy serving society through biomedical research and science education.
4000 Jones Bridge Road, Chevy Chase, MD 20815-6789 | (301) 215-8500 | email: webmaster@hhmi.org