Sign up now and receive the HHMI Bulletin by mail or e-mail.
FEATURES: A Happy Oasis
PAGE 2 OF 5
Bhatia and former grad student Alice Chen built 3-D microlivers and then implanted them in mice, where they functioned like livers.
How can members of a group that is simultaneously studying liver biology, tissue regeneration, and cancer, not to mention stem cells and infectious disease, find common ground? “Everyone here is working on something very, very different,” points out one member. But there is a constant exchange of ideas among the biologists, chemists, computer scientists, and engineers who gather in Bhatia’s office. All are eager to learn from one another, and they often make unexpected connections and come to creative solutions.
“I love my science but I don’t think about it 24/7!”
Sangeeta Bhatia
That’s because a collaborative nature is a prerequisite for joining Bhatia’s lab. It’s not enough for a job candidate to have the right scientific knowledge or technical skills: All members of the lab must weigh in on each potential member, and they look for people who will contribute to the amiable environment for which the lab is known. “We’ve turned away smart, ambitious people because we didn’t think they’d be good citizens,” Bhatia says.
To keep her team motivated as they work to create better solutions for patients, Bhatia is intent on crafting a supportive and sustaining environment for herself and the members of her lab. Curiosity, innovation, and a drive to improve human health are prized. So too are time and energy to spend outside the lab. “I want this to be a happy little oasis, a place where everyone wants to come,” she says of the scientific community she oversees.
See Sangeeta Bhatia on NOVA scienceNOW.
As a student at MIT and Harvard Medical School, studying both bioengineering and medicine, Bhatia didn’t exactly dream about running an academic lab of her own. Her professors seemed harried, her labmates worked through the night, and the intensity and competitive atmosphere did not mirror the lifestyle she wanted. “When I looked up the pipeline,” she recalls, “I wanted to know whether there were people who were married, had kids … were normal.” And as an aspiring female engineer in the 1990s, Bhatia found few role models in academia.
Her parents, immigrants from India who placed a high value on education, had actively encouraged Bhatia’s curiosity and aptitude for science and math. “As a child of Indian immigrants, there’s sort of a limited menu of career choices,” she observes. “My dad used to ask me, ‘What are you going to be, a doctor, an engineer, or an entrepreneur?’” She was determined to become part of the new field of bioengineering by the time she was in high school, when her father brought her to a friend’s lab at MIT, where researchers were investigating ultrasound therapies for cancer. “I was really captivated by the idea that engineers could use instruments to impact human health,” Bhatia says. She wanted to do that, too. She just assumed she’d do it within the biotechnology industry.
Bhatia is quick to acknowledge that her career might have taken a different path. “But then someone reminded me that, as an academic, you can build the group in your image: You can make the culture one you want to live in.” Her graduate work devising a system to grow liver cells in the lab had fueled her curiosity and sparked countless ideas for new experiments. So straight out of medical school, she took a faculty position in the bioengineering department at the University of California, San Diego (UCSD). She set herself up to explore her lingering questions about the liver, added a new cancer focus to her research, and took care to surround herself with people who shared her values. “And I loved it,” she says.