HHMI Bulletin
Currrent Issue Subscribe
Back Issues About the Bulletin
November 2011
Features
divider
Tjian
divider
Centrifuge
divider
UpFront
divider
Chronicle
divider
Science Education
divider

Room to Grow—and Learn small arrow

divider
Institute News
divider

Experiment Seeks to Create Interdisciplinary Curricula small arrow

divider

HHMI Offers International Student Research Fellowshipssmall arrow

divider

Getting Back to the Bench small arrow

divider
Lab Book
divider

Unlocking the Interferon Puzzle

divider

When Membranes Merge small arrow

divider

Bacterial–Viral Warfare small arrow

divider
Toolbox
divider

A New PACE for Laboratory Evolution small arrow

divider
Perspectives
divider
Editor

Subscribe Free
Sign up now and receive the HHMI Bulletin by mail or e-mail.small arrow

CHRONICLE

PAGE 1 OF 1

LAB BOOK:
Unlocking the Interferon Puzzle
by Nicole Kresge

Scientists show that interferon signaling depends on bond strength.

Unlocking the Interferon Puzzle

The interferon receptor (blue and green) can distinguish different interferons (brown) by how tightly they bind.

How can different interferon molecules bind to the same receptor and elicit vastly different responses? This conundrum has long puzzled scientists who study these signaling proteins. A study led by HHMI investigator K. Chris Garcia suggests the key may lie in how tightly the interferons bind to that receptor.

Interferons are protective chemicals that cells produce to combat cancer, viruses, and infections. It takes the combined effort of many different interferon molecules to get the job done, and each one activates a particular component of the body’s defense systems.

Garcia wanted to figure out how the 16 varieties of type I interferon trigger different cellular actions through just one cell surface receptor. He and his postdoctoral fellow Christoph Thomas at Stanford University School of Medicine used x-ray crystallography to deduce the three-dimensional structures of the receptor’s two subunits, IFNAR1 and IFNAR2, bound to two kinds of type I interferons, IFNα and IFNω.

Surprisingly, both interferon varieties bound the subunits in a similar fashion. The finding countered the prevailing notion that each kind of type I interferon would bind in a unique way.

To dig deeper, Garcia teamed up with researchers from the Weizmann Institute of Science in Israel and the University of Osnabrück in Germany. Collectively, they mutated the interferon amino acids responsible for binding to the receptor and found that although the locations of most contact points are constant from one interferon to another, the strength of the bonds varies. Thus, the receptor differentiates between interferon molecules by how avidly they attach at certain positions. The punch line is that chemistry, rather than ultrastructure, appears to functionally differentiate interferons.

As Garcia reports in the August 19, 2011, issue of Cell, manipulating the chemistry of the binding surfaces can endow one interferon with the functional properties of another. For example, replacing a single amino acid in IFNωwith the one found at the same position in IFNα boosts the mutant IFNωs cancer-fighting ability, making it more like IFNα.

These findings provide an alternative to the long-standing “lock-and-key” model of receptor binding in which there’s only one way a molecular key can bind to, and activate, its receptor lock.

Photo: Garcia lab

Download Story PDF
Requires Adobe Acrobat

HHMI INVESTIGATOR

K. Chris Garcia
K. Chris Garcia
 
Related Links

AT HHMI

bullet icon

Cracking the Interferon Code
(08.19.11)

ON THE WEB

external link icon

Garcia Lab
(Stanford University)

dividers
Back to Topto the top
© 2013 Howard Hughes Medical Institute. A philanthropy serving society through biomedical research and science education.
4000 Jones Bridge Road, Chevy Chase, MD 20815-6789 | (301) 215-8500 | email: webmaster@hhmi.org